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Abstract 
In this paper we use selected topics from formal language 

theory to show that programming language Python, with 

its syntax and semantics of primitive and structured 

statements (strings, tuples, lists and dictionaries) and 

functions, is suitable for use as a pseudo language and 

description of structures and algorithms in the formal 

language theory. 
  

Keywords 
formal language theory, pseudo language, pseudo code, 

Python, language defining, syntax analysis, translation. 

 
I. INTRODUCTION 
Formal language theory (FLT) appeared in the fifties of 

the twentieth century in the early works of Noam 

Chomsky. It was based on an appropriate natural 

language (e. g. English) model. Soon afterwards the use 

of context-free grammar and what is today called 

"Backus-Naur Form" (BNF) gave a major boost to the 

further development of FLT. It was used for the first time 

in  the definition of ALGOL 60 language, in 1963. 
 

 Since then a strong feedback between formal language 

theory and programming languages was created: formal 

language theory found its application in defining 

programming languages and their translators, while 

programming languages have helped in the study of  

formal language theory. Many FLT books published from 

the end of the seventies to the present day have used 

Pascal and C for a description of certain structures and 

algorithms of formal language theory. 
 

 However, we argue that the right tool for use in FLT 

was obtained only by the emergence of Python language, 

which is now at the top of popularity, and combines all 

programming paradigms: structured, object-oriented, 

logical, dynamic and functional and which has a wide 

range of applications in many branches: mathematics, 

physics, chemistry, biology, natural language processing, 

databases, web applications, information technology, 

computer science, etc.. 
 

 Using the examples of selected topics in formal 

language theory, this paper is structured as follows: In 

Section II. we introduce some basic definitions of formal 

language theory and show how the definition of grammar 

and generating of sentential form can be directly 

translated in Python. In Section III. we show how a 

pushdown recognizer for syntactic analysis of one simple  

language can be written in Python. We conclude by 

identifying some directions for future work. 

 
II. LANGUAGE DEFINING 
In order to define formal language, let's start from some 

basic definitions, [1] and[3].  

 Character is a unique (undivided or atomic) element. 

For example, upper- or lower-case Roman letters and 

digits are characters. Alphabet is a finite set of characters. 

String is a sequence of characters. Empty string is a string 

that has no symbols. It will be denoted by . The length of 

a string x, denoted d(x) or x, is the number of characters 

in the string. The length of empty string is zero. If A is an 

alphabet, A* denotes the set of all strings over A, including 

empty string . A+ denotes a set of A*\. A language over 

an alphabet A is a set of strings over A, that is, LA*. It is 

often written L(A) to show that some language L is defined 

over an alphabet A.  
 

 Sets of strings that make up elements of a language 

are called sentences. So, a language is a set of sentences.  
Strings of finite-length that can be seen as a unique, 

undivided whole are often observed. Such strings are 

called symbols or words. Set of all symbols defined over 

an alphabet A will be marked with V and called 

vocabulary. Since VA*, we conclude that V is a language. 

For example, vocabulary  
 

 V = i,iv,v,ix,x,xl,l,xc,c,cd,d,cm,m  
 

can be defined over the alphabet  
 

 A = i,v,x,l,c,d,m. 
 

 According to the Chomsky hierarchy (Chomsky, 

1957) languages are classified into four groups (or types), 

as follows: 
 

type   language 

 0     unrestricted 

 1  context-sensitive 

 2  context-free 

 3  linear 
 

 There are several methods for specifying the set that 

makes language. One method uses the formalism of 

regular sets and regular expressions. It is applicable only 

to the description of the type 3 language. 

     Second method uses a system called generative 

grammar. Every sentence of a language can be derived 

using grammar rules (called "productions"). 
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   Third method belongs to a class of automata. 

Generators are automata that can generate sentences of 

languages, but automata are more often used in the role of  

recognizers (in syntax language analysis). 

 

Grammars 

In general, a language is a finite set of sentences where 

sentences are of finite length. However, for many 

languages it is not possible to put an upper bound on the 

length of the longest sentence in that language and/or to 

the number of sentences. Except for that, it would be very  

unpractical to list all the sentences of a language even if a 

language consists of a finite number of sentences (for 

example 100 or 5000!). There are two principal methods of 

defining languages: by grammar and by automaton. 
 

 Grammar is a formalism to generate all four types of 

languages. A grammar is a 4-tuple, G  =  (N,T,P,S), where: 
 

N  is a finite set of nonterminal symbols, 

T  is a finite set of terminal symbols, different from N, 

P   is a finite set of pairs (,),where: 

             =   12; 1,   2,   (NT)*, N  
 

An element (,) in P will be written  and 

called production.  

S   is a special symbol in N, SN, called start symbol. 
 

If in some grammar, P contains following productions  
 

 1... n  
 

this is written  
 

 12...n.  
 

The sign ‘‘  is read ‘or’. i are alternatives for .  
 

 A grammar defines a language in a recursive manner. 

If G = (N,T,P,S) is a grammar, sentential form of G is 

defined recursively as follows: 
 

 (1) S is a sentential form. 

 (2) If  is a sentential form, where ,(NT)*, and  

 is in P, then  is also a sentential form. 
 

A sentential form of G containing no nonterminal symbols 

is called a sentence generated by G. 
 

 Let G = (N,T,P,S) be a grammar. It is defined as a 

relation , to be read as directly derives, on (NT)* as 

follows: If  is a string in (NT)* and  is a 

production in P, then .  
 

If 0, 1,..., n, i( NT)*, n1, such that 
 

 0  1  ...  n  
 

then 0 
n n  is a derivation of length n. Generally, it is 

written 
 

  0 
* n, n0, 0 

+

 n, n>0 
 

and said that 0 derives n. Thus, a language L generated 

by a grammar G is: 
 

 L(G) = wT*: S*w 
 

It is said that two grammars, G1 and G2, are equivalent if 

L(G1)=L(G2). 
 

Grammar classification 
Grammars can be classified according to the format of 

their productions. If G  =  (N,T,P,S) is a grammar, it is said 

that G is: 
 

1) Right-linear or  type 3 if each production in P is of 

the form 
 

    A  xB   or   A  x   A,BN, xT* 
 

 Left-linear if each production in P is of the form 
 

      A  Bx  or A  x   A,BN, xT* 
 

A right-linear grammar is called a regular grammar 

when 
 

(a) All productions, with the possible exception of 

S, are of the form AaB or Aa, where A, 

BN,aT. 
 

 (b) If S is in P, then S does not appear on the right 

side of any production.  
 

2)  Context-free or type 2 if each production in P is of the 

form 
 

      A         AN, (NT)* 
 

3) Context-sensitive or type 1 if each production in P is of 

the form  

    where . 
 

4)  Unrestricted or type 0 if there are no restrictions as the 

ones above. 
 

Grammar implementation in Python 

The grammar G  =  (N,T,P,S) can be directly translated in 

the Python 4-tuple in which the elements N and T can be 

implemented as lists, element P as dict and start symbol S 

as symbol from the list N. Initially we define grammar as 

text writing only the production in the form of: 
 

alfa -> beta 
 

Nonterminals are upper-case letters,  #  is  empty string 

and symbol -> is production sign. Here are two 

examples of productions, context-free grammar of the 

Roman numerals language and context-sensitive grammar 

of language anbncndn, n>0 
 

Roman = """ 
R -> MA|CB|XD|I 
M -> m|mm| mmm 
A -> #|CB| XD I 
C -> c|cc|ccc|cd|d|dc|dcc|dccc|cm 
B -> #|XD|I 
X -> x|xx|xxx|xl|l|lx|lxx|lxxx|xc 
D -> #|I 
I -> i|ii|iii|iv|v|vi|vii|viii|ix 
""" 
abcd = """ 
S  -> aBCSd| abcd 
Ba -> aB 
Bb -> bb 
Ca -> aC 
Cb -> bC 
Cc -> cc """ 
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Procedure GRM() from the productions of grammar, given 

as a text  (or text file),  returns the definition of grammar 

G =(N,T,P,S) that can be displayed by calling the printing 

procedure, Write_GRM(): 
 

from random import * 
def GRM (X) : # Grammar definition 
  N = T = '' 
  A = (X.replace (' ', '')).split('\n') 
  S = A[1][0];  Y = { 'alfa' : [], 'start' : S} 
  for a in A : 
     if not a : continue 
     [x, y] = a.split('->') 
     y      = tuple (y.split('|')) 
     Y[x], Y['alfa'] = y, Y['alfa'] +[x] 
     for c in y :  
       T += c *(not c.isupper() and c not in T) 
     for c in x :  
       N += c *(c.isupper() and c not in N) 
  return list(N), list(T), Y, S   
def Write_GRM (G) : 
  N, T, P, S = G 
  print P['name'], '= (N, T, P, S)' 
  print 'N = { ' +('%s, '*(len(N)-1) \ 
               % tuple(N[:-1])) +N[-1] +' }' 
  print 'T = { ' +('%s, '*(len(T)-1) \ 
               % tuple(T[:-1])) +T[-1] +' }' 
  print 'S =', P['start']   
  print 'P :' 
  for x in P['alfa'] : 
      print x, '->', P[x][0], 
      for y in P[x][1:] : print '|', y,  
      print 
  print   
 

For example, the grammar of the Roman numerals 

language is: 
 

>>> G = (N, T, P, S) = GRM (Roman); Write_GRM (G) 
G = ( N, T, P, S ) 
N = { R, M, A, C, B, X, D, I } 
T = { m, #, c, d, x, l, i, v } 
S = R 
P : 
R -> MA | CB | XD | I 
M -> m | mm | mmm 
A -> # | CB | XD | I 
C -> c | cc | ccc | cd | d | dc | dcc | dccc | cm 
B -> # | XD | I 
X -> x | xx | xxx | xl | l | lx | lxx | lxxx | xc 
D -> # | I 
I -> i | ii | iii | iv | v | vi | vii | viii | ix 

and grammar of languageanbncndn, n>0is: 
 

>>> G = (N, T, P, S) = GRM (abcd);  Write_GRM (G) 
G = ( N, T, P, S ) 
N = { S, B, C } 
T = { a, d, b, c } 
S = S 
P : 
S -> aBCSd | abcd 
Ba -> aB 
Bb -> bb 
Ca -> aC 
Cb -> bC 
Cc -> cc 

 

Procedure DER(P) generates sentences of the language 

defined by productions P of grammar G. If called by 

DER(P,True), a sequence of sentential forms (SF) will be 

displayed. 
 

def DER (P, DSP = False) : 
  SF = P['start'];  print SF,  
  if not DSP : print '*=>',  

  while True : 
    for a in P['alfa'] : 
      if a in SF : 
        x  = (''.join(sample (P[a], 1))) 
        i  = SF.find(a);  x *= (x != '#') 
        SF = SF[:i] +x +SF[i+len(a):] 
        if DSP : print '=>', SF, 
        break 
    else : 
      print SF if not DSP else ''; return SF 
 
>>> G = (N, T, P, S) = GRM (Roman) 
>>> for i in range(3) :  
       sf = DER (P, True);  print 
 
R => CB => cB => cXD => cxD => cxI => cxiii 
R => XD => xxxD => xxxI => xxxi 
R => MA => mA => mXD => mxcD => mxcI => mxciii 
 
>>> G = (N, T, P, S) = GRM (abcd) 
>>> for i in range(3) :  
       sf = DER (P, True);  print 
 
S => aBCSd => aBCabcdd => aBaCbcdd => aaBCbcdd 
=> aaBbCcdd => aabbCcdd => aabbccdd 

 

III. SYNTACTIC ANALYSIS 
In practice we often encounter the problem that a 

grammar or a generator of the language is known and a 

character string is given, and the question is asked 

whether this is a sentence of the language generated by a 

given grammar or generator. This process is called 

syntactic analysis. 
 

If the language is defined by a grammar, problem 

reduces to finding a sequence of derivations (sentential 

forms), starting from S, which would result in this string 

(sentence). Such a procedure of syntax analysis is called 

parsing. Parsing process structure on the computer (the 

program in some selected programming language) is 

called  parser, [4]. 
 

 If the language is defined by an automaton, we ask the 

question: can a given string be generated by a given 

generator? Then the automaton is in the role of language 

recognizer, which analyzes the input string, and after a 

finate number of changes in their configuration, starting 

from an initial state reaches a final state if the string is in 

the language and answers "yes", or the process interrupts 

and answers "no" if the input string is not in the language. 

Such a syntax analysis procedure is called recognizing, 

and an automaton that does it is called recognizer, [4]. 

  
Recognizing 
Third language defining method is by an automaton. It is 

a device which consists of a combination of the following 

parts: an input tape with an input head (reader), an output 

tape with an output head (writer), an auxiliary memory, 

and a finite set of rules which controls or regulates the 

information flow.  
 

Depending on the type of language that automaton 

recognizes, there are following types of recognizers: 
 

Name Definition Language  
final M  =  (Q,,,q0,F) type 3 
pushdown P   = (Q, , , , q0, Z0, F) type 2  

double- pushdown Pt = (Q, , 1, 2, , q0,F) type 1 

 Turing machine Tg = (Q, , , , q0, F) type 0 



4 

 

where: 
Q final set of states 
P(Q)  power set of Q 

 alphabet 
 alphabet of stack 
1, 2 alphabet of first and second stack 

Z0 the initial character of stack, Z0 

 transition function,  
q0  the initial state, q0Q 
F set of final states, FQ 
 

Depending on the type of language, transition function is 

defined as: 
 

:   Q    P(Q)   type 3 
: Q ()    Q  *   type 2 

:   Q()12  Q1*2* type 1 

 : Q #        Q  {\#}{-1,0,1} type 0  
 

To show the syntax analysis of context-free languages 

using pushdown recognizer P, first we introduce the 

definitions, [1]: 
 

1) A configuration  of  P  is  a tuple (q,w,) from 

 Q **, where: 
 

q current state 

w remaining portion of the input 

 content of the pushdown list; the leftmost 

      symbol of  is the topmost pushdown symbol. 
 

2) An inital configuration of P is(q0,w,Z0), 

3) A final configuration  of P is(q,,), qF, *, 

4) A move by P is binary relation ├─. We write 
 

  (q,aw,Z) ├─ (q',w,) 
 

if (q,a,Z) contains (q',) for any qQ , a, w*, 

Z. We say that a input string w is accepted by  P  if  
 

  (q0, w, Z0) ├─* (q, , ) 
 

The language defined by P, denoted L(P), is set of strings 

w accepted by P. It is generally a context-free language:  
 

 L(P)=w: w*(q0, w, Z0)├─*(q, , ), qF, * 
 

Python's dict is the most appropriate structure for the 

implementation of the transition function because it 

represents its copy. If D is the transition function of any 

type of recognizer, its elements will generally have the 

structure: 
 

D = { x0 : y0, x1 : y1, ..., xn : yn } 
 

where xi is domain tuple and  yi is codomain whose 

structure is dependent on automaton type. For example, 

pushdown recognizer of language Exp generated by a 

grammar: 
 

 E -> E+E| E*E| (E)| a| b 
 

written in Python is given below: 
 

# -PUSHDOWN RECOGNIZER 
Exp = """ 
Q  = [0, 1];  A = ['a', 'b', '+', '*', '(', ')'] 
St = ['$', '('];  _1 = '$';  s = 0;  F = [1] 
D  = { 
  (0,'a','$'): (1, '$'),  (0,'a','('): (1, '('), 
  (0,'b','$'): (1, '$'),  (0,'b','('): (1, '('), 
  (0,'(','$'): (0, '($'), (0,'(','('): (0, '(('), 
  (1,'+','$'): (0, '$'),  (1,'*','$'): (0, '$'), 
  (1,'+','('): (0, '('),  (1,'*','('): (0, '('), 
  (1,')','('): (1, ''),   (1,'','$') : (1,'')  } 

Name = 'Exp' 
DSP  = (Q, A, St, _1, D, s, F) """ 
NL = '\n' 
def Input_W ():  
  return (raw_input ('Enter input string: ')).\ 
         replace (' ', '')  
 

def Write_SP (Name): # pushdown recognizer 
  print Name 
  print NL, 'SP = (Q, A, St, _1, D, s, F)', NL 
  print 'Q  =', Q, NL, ' A =', A, NL, \ 
        'St =', St, NL, '_1 =', _1, NL, \ 
        ' s =', s, NL, ' F =', F 
  print NL, 'D:' 
  S = D.keys();  S.sort() 
  for d in S: print ' ', d, '=', D[d] 
  print   

 

def Write_C (y, C): print y, C  
 

def SP (x): 
  global Q, A, St, _1, D, s, F 
 

  Ok = True; End = False 
  q = s; alfa = '$' 
  C = (q, x, alfa); 
  Write_C ('', C) 
  while len(x)>=0 and Ok and not End: 
    X = ''; a = '' 
    if len(x) > 0    : X = x[0]; x = x[1:] 
    if len(alfa) > 0 : a = alfa[0] 
    Ok = False 
    d = (q, X, a) 
    if d in D : 
      q, g = D[d] 
      if g == '' and a != '': alfa = alfa[1:] 
      if g != ''            : alfa = g +alfa[1:] 
      Ok = True 
    else : Ok = False 
     

    if Ok: 
      C = (q, x, alfa); 
      Write_C ('   |--', C) 
      if q in F and alfa == '' : End = True 
      if End and x != ''       : Ok  = False 
 

  Ok = Ok and End       
  return Ok 
 

exec Exp;  Write_SP (Name) 
 

w = Input_W(); print 
while len(w) > 0: 
  Ok = SP (w) 
  if Ok: Write_C ('   |--', 'accept') 
  else : Write_C ('   |--', 'error') 
  print 
  w = Input_W(); print 
 

>>> 
Enter input string: a*(a+b) 
 (0, 'a*(a+b)', '$') 
   |-- (1, '*(a+b)', '$') 
   |-- (0, '(a+b)', '$') 
   |-- (0, 'a+b)', '($') 
   |-- (1, '+b)', '($') 
   |-- (0, 'b)', '($') 
   |-- (1, ')', '($') 
   |-- (1, '', '$') 
   |-- (1, '', '') 
   |-- accept 
 

IV. TRANSLATION 
If  is input alphabet and  is output alphabet, translation 

from the language L1, L1*, to the language L2, L2*, 

is a relation T from ** so that L1 is the domain and L2 

is the codomain of T. The sentence y, such that (x, y) is in 

T, is called the output of x. 
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Syntax-directed translation 

One of formalisms for defining translation is the syntax-

directed translation scheme. Intuitively, syntax-directed 

translation scheme is simply a grammar in which  

translation elements are related to each production. 

Whenever a production was used in the derivation of an 

input sentence, the translation element is used to help 

compute a portion of the output sentence related to the 

portion of the input sentence generated by that 

production. Translational form of T is defined as follows:  
 

1) (S, S) is a translational form and the first S  is related 

to the second S. 

2) If (A, 'A') is  a  translational  form  and  if A, ' 

is a rule in R, then (, ''') is new translational form. 

Nonterminals from  and ' are exactly related, same as 

in the rule. Nonterminals from  and  are related to 

such nonterminals from ' and ' in the new 

translational form exactly as in the old. We write: 
 

 (A, 'A')  (, ''') 
 

and read (A, 'A ') "directly derives" (, '''). 

Similarly to the derivation of sentential form, a series 

of deriving k translational form, where k0, will be 

denoted by *, so the translation defined by T, 

denoted as  (T), is a set of pairs: 
 

 (T) = { (x, y)| (S, S) * (x, y), x*, y* } 
 

The implementation of SDT in Python is given in the 

procedure SDT (): 
 

def SDT (X) : # Syntax-directed translation 
                grammars 
  A = (X.replace (' ', '')).split('\n') 
  Y = {'start' : A[1][0]} 
  for a in A : 
     if not a : continue 
     b = a.split('->'); N = b[0] 
     b = b[1].split(','); 
     Y [N] = (tuple (b[0].split('|')), 
              tuple (b[1].split('|'))) 
  return Y   

 

where X is an input-output grammar of languages  to 

be translated, with productions of form 
 

 A -> I, O 
 

where I are the alternatives for input and O for output 

language. For example, for translating Roman into Arabic 

numerals, a grammar RA can be defined: 
 

#    Input grammar,  Output grammar  
RA = """ 
R -> MA| CB| XD| I,  MA| CB| XD| I 
M -> m| mm| mmm,     1| 2| 3 
A -> #| CB| XD| I,   000| CB| 0XD| 00I 
C -> c| cc| ccc| cd| d| dc| dcc| dccc| cm, \ 
     1| 2| 3| 4| 5| 6| 7| 8| 9 
B -> #| XD| I,       00| XD| 0I 
X -> x| xx| xxx| xl| l| lx| lxx| lxxx| xc, \ 
     1| 2| 3| 4| 5| 6| 7| 8| 9 
D -> #| I,           0| I 
I -> i| ii| iii| iv| v| vi| vii| viii| ix, \ 
     1| 2| 3| 4| 5| 6| 7| 8| 9 """ 

 

To translate the input string, the Roman numeral, into 

Arabic, it is necessary to derive syntax analysis tree 

(sequence of derivations) by some parsing procedure. It is 

left out here, so let's show the scheme of translating 

Roman numerals into Arabic using the examples of three 

generated sentential forms: 
 

T = SDT (RA);  frm  = "(%s, %s)"      
for i in range (3) : 
  x = y = T['start'] 
  print frm % (x, y), 
  while not x.islower() : 
    for s in x : 
      if s.isupper() : 
        a, b = T[s] 
        z = ''.join(sample (a, 1)) 
        i = a.index(z);  z = z *(z != '#') 
        x = x.replace (s, z) 
        a = b[i];  y = y.replace (s, a) 
        print '\t-->', frm % (x, y) 
        break 
  print 
 

>>> 
(R, R) --> (XD, XD) (R, R) --> (CB, CB) 
 --> (xD, 1D)  --> (dB, 5B) 
 --> (x, 10)  --> (dXD, 5XD) 
(R, R) --> (MA, MA)  --> (dxcD, 59D) 
 --> (mmA, 2A)  --> (dxc, 590) 
 --> (mmI, 200I) 
 --> (mmvi, 2006) 

 

Finite transducer 

Finite transducer is defined as a 6-tuple M = (Q,,,q0,F). 

It is a finite automaton where  is output alphabet and  is 

a mapping from Qto finite subsets of Q 

configuration of finite transcudes M  is a tuple (q,x,y), 

where 
 

qQ is the current state,  
x is the input string remaining on the input tape, with the 

  leftmost symbol of x under the input head, 

y is the output string emitted up to this point.  
 

The initial configuration is (q0,x,) and the final 

configuration is(q,,y), qF, y*. A move by M is the 

binary relation ├─. We write 
 

 (q, ax, y) ├─ (r, x, yz) 
 

if (q,a) contains (r,z) for any qQ , a, z*. We say 

that y is an output for x if   
 

 (q0,x,)├─*(q, , y) 
 

The translation defined by M, denoted (M), is 
 

 (M) = {(x,y)| (q0,x,)├─*(q,,y), x*, y*} 
 

Here is an example of transducing Roman numerals into 

Arabic. D is transition function with structure of elements 
 

q : (Tm, Td, Tc, Tl, Tx, Tv, Ti, Tf)  
 

where q is state, Ta=D[q]['mdclxvi$'.find(a)].  
 

# TRANSDUCER OF ROMAN NUMERALS INTO ARABIC 

# Transition function ("table") 
e = '';   
# q    m      d      c      l       x        
#         v        i        $ 
D = { 'q0' : 0, 'tr' : 'mdclxvi$', 
       'Q' : range (31), 'F' : range (1, 31), 
  0: ((1,e), (8,e), (4,e), (17, e),(13, e), 
         (26,e),  (22, e),  e      ), 
  1: ((2,e), (8,1), (4,1), (17,10),(13,10), 
         (26,100),(22,100),(e,1000)),    # m 
  2: ((3,e), (8,2), (4,2), (17,20),(13,20), 
         (26,200),(22,200),(e,2000)),    # mm 
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  3: (    e, (8,3), (4,3), (17,30),(13,30), 
         (26,300),(22,300),(e,3000)),    # mmm 
  4: ((12,e),(7,e), (5,e), (17, 1),(13, 1), 
         (26, 10),(22, 10),(e, 100)),    # c 
  5: (    e,     e, (6,e), (17, 2),(13, 2), 
         (26, 20),(22, 20),(e, 200)),    # cc 
  6: (    e,     e,     e, (17, 3),(13, 3), 
         (26, 30),(22, 30),(e, 300)),    # ccc 
  7: (    e,     e,     e, (17, 4),(13, 4), 
         (26, 40),(22, 40),(e, 400)),    # cd 
  8: (    e,     e, (9,e), (17, 5),(13, 5), 
         (26, 50),(22, 50),(e, 500)),    # d 
  9: (    e,     e,(10,e), (17, 6),(13, 6), 
         (26, 60),(22, 60),(e, 600)),    # dc 
 10: (    e,     e,(11,e), (17, 7),(13, 7), 
         (26, 70),(22, 70),(e, 700)),    # dcc 
 11: (    e,     e,     e, (17, 8),(13, 8), 
         (26, 80),(22, 80),(e, 800)),    # dccc 
 12: (    e,     e,     e, (17, 9),(13, 9), 
         (26, 90),(22, 90),(e, 900)),    # cm 
 13: (    e,     e,(21,e), (16, e),(14, e), 
         (26,  1),(22,  1),(e,  10)),    # x 
 14: (    e,     e,     e,      (),(15, e), 
         (26,  2),(22,  2),(e,  20)),    # xx 
 15: (    e,     e,     e,      (),     (), 
         (26,  3),(22,  3),(e,  30)),    # xxx 
 16: (    e,     e,     e,      (),     (), 
         (26,  4),(22,  4),(e,  40)),    # xl 
 17: (    e,     e,     e,      (),(18, e), 
         (26,  5),(22,  5),(e,  50)),    # l 
 18: (    e,     e,     e,      (),(19, e), 
         (26,  6),(22,  6),(e,  60)),    # lx 
 19: (    e,     e,     e,      (),(20, e), 
         (26,  7),(22,  7),(e,  70)),    # lxx 
 20: (    e,     e,     e,      (),     (), 
         (26,  8),(22,  8),(e,  80)),    # lxxx 
 21: (    e,     e,     e,      (),     (), 
         (26,  9),(22,  9),(e,  90)),    # xc 
 22: (    e,     e,     e,      (),(30, e), 
         (25,  e),(23,  e),(e,   1)),    # i 
 23: (    e,     e,     e,       e,      e, 
           e,(24,  e),(e,   2)),         # ii 
 24: (    e,     e,     e,       e,      e, 
           e,       e,(e,   3)),         # iii 
 25: (    e,     e,     e,       e,      e, 
           e,       e,(e,   4)),         # iv 
 26: (    e,     e,     e,       e,      e, 
           e,(27,  e),(e,   5)),         # v        
 27: (    e,     e,     e,       e,      e, 
           e,(28,  e),(e,   6)),         # vi    
 28: (    e,     e,     e,       e,      e, 
           e,(29,  e),(e,   7)),         # vii    
 29: (    e,     e,     e,       e,      e, 
           e,       e,(e,   8)),         # viii 
 30: (    e,     e,     e,       e,      e, 
           e,       e,(e,   9)) }        # ix 
 

p = lambda x : x if str(x) else '#' 
TR = D['tr'] 
def FT (w, a=1): 
  A = a;  w += '$';  q = 0;  i = 1;  y = '' 
  C = (q, p(w), p(y));  print "(%2s,%s,%s)" % C 
  while 'Ok' : 
    a = w[0]; j = TR.find(a) 
    if j >= 0: 
      Q = D[q][j] 
      if Q != () : 
        q, z = Q; y += str(z); w = w[1:] 
        C = (p(q), p(w), p(y)) 
        print " |-- (%2s,%s,%s)" % C 
        if not w : return True 
      else : print 'syntax error';  return False 
    else: 
      print 'illegal character';  return False 
w  = raw_input ("input Roman ").lower() 
Ok = FT (w) 

>>> 
input Roman X 
( 0,x$,#) 
 |-- (13 $,#) 
 |-- ( #,#,10) 
 

>>>  
input Roman mmvi 
( 0,mmvi$,#) 
 |-- ( 1,mvi$,#) 
 |-- ( 2,vi$,#) 
 |-- (26,i$,200) 
 |-- (27,$,200) 
 |-- ( #,#,2006) 
 

>>>  
input Roman dxc 
( 0,dxc$,#) 
 |-- ( 8,xc$,#) 
 |-- (13,c$,5) 
 |-- (21,$,5) 
 |-- ( #,#,590) 
 

V. CONCLUSION 
In this paper we demonstrated how Python programming 

language can be employed as a pseudo-language using the 

example of selected structures and algorithms of formal 

language theory for their description and implementation. 

In [3], [4] and [5] there are many examples of applying 

Python for implementing procedures of the context-free 

languages syntax analysis and for recognizing the 

languages of all types. 
 

 Python is also suitable for use in creating the 

interpreters and the preprocessors, both as an encoding 

language and as a target language. Examples of such 

applications are given in [5] where it is implemented as an 

interpreter for language PL/0, according to [8], and 

preprocessor of mini language defined in [2]. 
 

  It has been shown that Python is suitable for use in 

natural language processing (NLP). In [6] and [7] Python 

has been successfully applied in the implementation of the 

lexical and syntax analysis of English language and its 

translation in a special form. 

 

 Finally, we can conclude with satisfaction that the 

implementation of Python can significantly improve the 

study of the formal language theory and its applications. 
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