
1

PYTHON as Pseudo Language for
Formal Language Theory

Zdravko DOVEDAN HAN, Kristina KOCIJAN, Vjera LOPINA

Department of Information and Communication Sciences, Faculty of Humanities and Social Sciences, University
of Zagreb

Abstract
In this paper we use selected topics from formal language

theory to show that programming language Python, with

its syntax and semantics of primitive and structured

statements (strings, tuples, lists and dictionaries) and

functions, is suitable for use as a pseudo language and

description of structures and algorithms in the formal

language theory.

Keywords
formal language theory, pseudo language, pseudo code,

Python, language defining, syntax analysis, translation.

I. INTRODUCTION
Formal language theory (FLT) appeared in the fifties of

the twentieth century in the early works of Noam

Chomsky. It was based on an appropriate natural

language (e. g. English) model. Soon afterwards the use

of context-free grammar and what is today called

"Backus-Naur Form" (BNF) gave a major boost to the

further development of FLT. It was used for the first time

in the definition of ALGOL 60 language, in 1963.

 Since then a strong feedback between formal language

theory and programming languages was created: formal

language theory found its application in defining

programming languages and their translators, while

programming languages have helped in the study of

formal language theory. Many FLT books published from

the end of the seventies to the present day have used

Pascal and C for a description of certain structures and

algorithms of formal language theory.

 However, we argue that the right tool for use in FLT

was obtained only by the emergence of Python language,

which is now at the top of popularity, and combines all

programming paradigms: structured, object-oriented,

logical, dynamic and functional and which has a wide

range of applications in many branches: mathematics,

physics, chemistry, biology, natural language processing,

databases, web applications, information technology,

computer science, etc..

 Using the examples of selected topics in formal

language theory, this paper is structured as follows: In

Section II. we introduce some basic definitions of formal

language theory and show how the definition of grammar

and generating of sentential form can be directly

translated in Python. In Section III. we show how a

pushdown recognizer for syntactic analysis of one simple

language can be written in Python. We conclude by

identifying some directions for future work.

II. LANGUAGE DEFINING
In order to define formal language, let's start from some

basic definitions, [1] and[3].

 Character is a unique (undivided or atomic) element.

For example, upper- or lower-case Roman letters and

digits are characters. Alphabet is a finite set of characters.

String is a sequence of characters. Empty string is a string

that has no symbols. It will be denoted by . The length of

a string x, denoted d(x) or x, is the number of characters

in the string. The length of empty string is zero. If A is an

alphabet, A* denotes the set of all strings over A, including

empty string . A+ denotes a set of A*\. A language over

an alphabet A is a set of strings over A, that is, LA*. It is

often written L(A) to show that some language L is defined

over an alphabet A.

 Sets of strings that make up elements of a language

are called sentences. So, a language is a set of sentences.
Strings of finite-length that can be seen as a unique,

undivided whole are often observed. Such strings are

called symbols or words. Set of all symbols defined over

an alphabet A will be marked with V and called

vocabulary. Since VA*, we conclude that V is a language.

For example, vocabulary

 V = i,iv,v,ix,x,xl,l,xc,c,cd,d,cm,m

can be defined over the alphabet

 A = i,v,x,l,c,d,m.

 According to the Chomsky hierarchy (Chomsky,

1957) languages are classified into four groups (or types),

as follows:

type language

 0 unrestricted

 1 context-sensitive

 2 context-free

 3 linear

 There are several methods for specifying the set that

makes language. One method uses the formalism of

regular sets and regular expressions. It is applicable only

to the description of the type 3 language.

 Second method uses a system called generative

grammar. Every sentence of a language can be derived

using grammar rules (called "productions").

2

 Third method belongs to a class of automata.

Generators are automata that can generate sentences of

languages, but automata are more often used in the role of

recognizers (in syntax language analysis).

Grammars

In general, a language is a finite set of sentences where

sentences are of finite length. However, for many

languages it is not possible to put an upper bound on the

length of the longest sentence in that language and/or to

the number of sentences. Except for that, it would be very

unpractical to list all the sentences of a language even if a

language consists of a finite number of sentences (for

example 100 or 5000!). There are two principal methods of

defining languages: by grammar and by automaton.

 Grammar is a formalism to generate all four types of

languages. A grammar is a 4-tuple, G = (N,T,P,S), where:

N is a finite set of nonterminal symbols,

T is a finite set of terminal symbols, different from N,

P is a finite set of pairs (,),where:

  = 12; 1, 2, (NT)*, N

An element (,) in P will be written  and

called production.

S is a special symbol in N, SN, called start symbol.

If in some grammar, P contains following productions

 1... n

this is written

 12...n.

The sign ‘‘ is read ‘or’. i are alternatives for .

 A grammar defines a language in a recursive manner.

If G = (N,T,P,S) is a grammar, sentential form of G is

defined recursively as follows:

 (1) S is a sentential form.

 (2) If  is a sentential form, where ,(NT)*, and

 is in P, then  is also a sentential form.

A sentential form of G containing no nonterminal symbols

is called a sentence generated by G.

 Let G = (N,T,P,S) be a grammar. It is defined as a

relation , to be read as directly derives, on (NT)* as

follows: If  is a string in (NT)* and  is a

production in P, then .

If 0, 1,..., n, i(NT)*, n1, such that

 0  1  ...  n

then 0
n n is a derivation of length n. Generally, it is

written

 0
* n, n0, 0

+

 n, n>0

and said that 0 derives n. Thus, a language L generated

by a grammar G is:

 L(G) = wT*: S*w

It is said that two grammars, G1 and G2, are equivalent if

L(G1)=L(G2).

Grammar classification
Grammars can be classified according to the format of

their productions. If G = (N,T,P,S) is a grammar, it is said

that G is:

1) Right-linear or type 3 if each production in P is of

the form

 A  xB or A  x A,BN, xT*

 Left-linear if each production in P is of the form

 A  Bx or A  x A,BN, xT*

A right-linear grammar is called a regular grammar

when

(a) All productions, with the possible exception of

S, are of the form AaB or Aa, where A,

BN,aT.

 (b) If S is in P, then S does not appear on the right

side of any production.

2) Context-free or type 2 if each production in P is of the

form

 A   AN, (NT)*

3) Context-sensitive or type 1 if each production in P is of

the form 

 where .

4) Unrestricted or type 0 if there are no restrictions as the

ones above.

Grammar implementation in Python

The grammar G = (N,T,P,S) can be directly translated in

the Python 4-tuple in which the elements N and T can be

implemented as lists, element P as dict and start symbol S

as symbol from the list N. Initially we define grammar as

text writing only the production in the form of:

alfa -> beta

Nonterminals are upper-case letters, # is empty string

and symbol -> is production sign. Here are two

examples of productions, context-free grammar of the

Roman numerals language and context-sensitive grammar

of language anbncndn, n>0

Roman = """
R -> MA|CB|XD|I
M -> m|mm| mmm
A -> #|CB| XD I
C -> c|cc|ccc|cd|d|dc|dcc|dccc|cm
B -> #|XD|I
X -> x|xx|xxx|xl|l|lx|lxx|lxxx|xc
D -> #|I
I -> i|ii|iii|iv|v|vi|vii|viii|ix
"""
abcd = """
S -> aBCSd| abcd
Ba -> aB
Bb -> bb
Ca -> aC
Cb -> bC
Cc -> cc """

3

Procedure GRM() from the productions of grammar, given

as a text (or text file), returns the definition of grammar

G =(N,T,P,S) that can be displayed by calling the printing

procedure, Write_GRM():

from random import *
def GRM (X) : # Grammar definition
 N = T = ''
 A = (X.replace (' ', '')).split('\n')
 S = A[1][0]; Y = { 'alfa' : [], 'start' : S}
 for a in A :
 if not a : continue
 [x, y] = a.split('->')
 y = tuple (y.split('|'))
 Y[x], Y['alfa'] = y, Y['alfa'] +[x]
 for c in y :
 T += c *(not c.isupper() and c not in T)
 for c in x :
 N += c *(c.isupper() and c not in N)
 return list(N), list(T), Y, S
def Write_GRM (G) :
 N, T, P, S = G
 print P['name'], '= (N, T, P, S)'
 print 'N = { ' +('%s, '*(len(N)-1) \
 % tuple(N[:-1])) +N[-1] +' }'
 print 'T = { ' +('%s, '*(len(T)-1) \
 % tuple(T[:-1])) +T[-1] +' }'
 print 'S =', P['start']
 print 'P :'
 for x in P['alfa'] :
 print x, '->', P[x][0],
 for y in P[x][1:] : print '|', y,
 print
 print

For example, the grammar of the Roman numerals

language is:

>>> G = (N, T, P, S) = GRM (Roman); Write_GRM (G)
G = (N, T, P, S)
N = { R, M, A, C, B, X, D, I }
T = { m, #, c, d, x, l, i, v }
S = R
P :
R -> MA | CB | XD | I
M -> m | mm | mmm
A -> # | CB | XD | I
C -> c | cc | ccc | cd | d | dc | dcc | dccc | cm
B -> # | XD | I
X -> x | xx | xxx | xl | l | lx | lxx | lxxx | xc
D -> # | I
I -> i | ii | iii | iv | v | vi | vii | viii | ix

and grammar of languageanbncndn, n>0is:

>>> G = (N, T, P, S) = GRM (abcd); Write_GRM (G)
G = (N, T, P, S)
N = { S, B, C }
T = { a, d, b, c }
S = S
P :
S -> aBCSd | abcd
Ba -> aB
Bb -> bb
Ca -> aC
Cb -> bC
Cc -> cc

Procedure DER(P) generates sentences of the language

defined by productions P of grammar G. If called by

DER(P,True), a sequence of sentential forms (SF) will be

displayed.

def DER (P, DSP = False) :
 SF = P['start']; print SF,
 if not DSP : print '*=>',

 while True :
 for a in P['alfa'] :
 if a in SF :
 x = (''.join(sample (P[a], 1)))
 i = SF.find(a); x *= (x != '#')
 SF = SF[:i] +x +SF[i+len(a):]
 if DSP : print '=>', SF,
 break
 else :
 print SF if not DSP else ''; return SF

>>> G = (N, T, P, S) = GRM (Roman)
>>> for i in range(3) :
 sf = DER (P, True); print

R => CB => cB => cXD => cxD => cxI => cxiii
R => XD => xxxD => xxxI => xxxi
R => MA => mA => mXD => mxcD => mxcI => mxciii

>>> G = (N, T, P, S) = GRM (abcd)
>>> for i in range(3) :
 sf = DER (P, True); print

S => aBCSd => aBCabcdd => aBaCbcdd => aaBCbcdd
=> aaBbCcdd => aabbCcdd => aabbccdd

III. SYNTACTIC ANALYSIS
In practice we often encounter the problem that a

grammar or a generator of the language is known and a

character string is given, and the question is asked

whether this is a sentence of the language generated by a

given grammar or generator. This process is called

syntactic analysis.

If the language is defined by a grammar, problem

reduces to finding a sequence of derivations (sentential

forms), starting from S, which would result in this string

(sentence). Such a procedure of syntax analysis is called

parsing. Parsing process structure on the computer (the

program in some selected programming language) is

called parser, [4].

 If the language is defined by an automaton, we ask the

question: can a given string be generated by a given

generator? Then the automaton is in the role of language

recognizer, which analyzes the input string, and after a

finate number of changes in their configuration, starting

from an initial state reaches a final state if the string is in

the language and answers "yes", or the process interrupts

and answers "no" if the input string is not in the language.

Such a syntax analysis procedure is called recognizing,

and an automaton that does it is called recognizer, [4].

Recognizing
Third language defining method is by an automaton. It is

a device which consists of a combination of the following

parts: an input tape with an input head (reader), an output

tape with an output head (writer), an auxiliary memory,

and a finite set of rules which controls or regulates the

information flow.

Depending on the type of language that automaton

recognizes, there are following types of recognizers:

Name Definition Language
final M = (Q,,,q0,F) type 3
pushdown P = (Q, , , , q0, Z0, F) type 2

double- pushdown Pt = (Q, , 1, 2, , q0,F) type 1

 Turing machine Tg = (Q, , , , q0, F) type 0

4

where:
Q final set of states
P(Q) power set of Q

 alphabet
 alphabet of stack
1, 2 alphabet of first and second stack

Z0 the initial character of stack, Z0

 transition function,
q0 the initial state, q0Q
F set of final states, FQ

Depending on the type of language, transition function is

defined as:

: Q  P(Q) type 3
: Q ()   Q  * type 2

: Q()12  Q1*2* type 1

 : Q #  Q  {\#}{-1,0,1} type 0

To show the syntax analysis of context-free languages

using pushdown recognizer P, first we introduce the

definitions, [1]:

1) A configuration of P is a tuple (q,w,) from

 Q **, where:

q current state

w remaining portion of the input

 content of the pushdown list; the leftmost

 symbol of  is the topmost pushdown symbol.

2) An inital configuration of P is(q0,w,Z0),

3) A final configuration of P is(q,,), qF, *,

4) A move by P is binary relation ├─. We write

 (q,aw,Z) ├─ (q',w,)

if (q,a,Z) contains (q',) for any qQ , a, w*,

Z. We say that a input string w is accepted by P if

 (q0, w, Z0) ├─* (q, , )

The language defined by P, denoted L(P), is set of strings

w accepted by P. It is generally a context-free language:

 L(P)=w: w*(q0, w, Z0)├─*(q, , ), qF, *

Python's dict is the most appropriate structure for the

implementation of the transition function because it

represents its copy. If D is the transition function of any

type of recognizer, its elements will generally have the

structure:

D = { x0 : y0, x1 : y1, ..., xn : yn }

where xi is domain tuple and yi is codomain whose

structure is dependent on automaton type. For example,

pushdown recognizer of language Exp generated by a

grammar:

 E -> E+E| E*E| (E)| a| b

written in Python is given below:

-PUSHDOWN RECOGNIZER
Exp = """
Q = [0, 1]; A = ['a', 'b', '+', '*', '(', ')']
St = ['$', '(']; _1 = '$'; s = 0; F = [1]
D = {
 (0,'a','$'): (1, '$'), (0,'a','('): (1, '('),
 (0,'b','$'): (1, '$'), (0,'b','('): (1, '('),
 (0,'(','$'): (0, '($'), (0,'(','('): (0, '(('),
 (1,'+','$'): (0, '$'), (1,'*','$'): (0, '$'),
 (1,'+','('): (0, '('), (1,'*','('): (0, '('),
 (1,')','('): (1, ''), (1,'','$') : (1,'') }

Name = 'Exp'
DSP = (Q, A, St, _1, D, s, F) """
NL = '\n'
def Input_W ():
 return (raw_input ('Enter input string: ')).\
 replace (' ', '')

def Write_SP (Name): # pushdown recognizer
 print Name
 print NL, 'SP = (Q, A, St, _1, D, s, F)', NL
 print 'Q =', Q, NL, ' A =', A, NL, \
 'St =', St, NL, '_1 =', _1, NL, \
 ' s =', s, NL, ' F =', F
 print NL, 'D:'
 S = D.keys(); S.sort()
 for d in S: print ' ', d, '=', D[d]
 print

def Write_C (y, C): print y, C

def SP (x):
 global Q, A, St, _1, D, s, F

 Ok = True; End = False
 q = s; alfa = '$'
 C = (q, x, alfa);
 Write_C ('', C)
 while len(x)>=0 and Ok and not End:
 X = ''; a = ''
 if len(x) > 0 : X = x[0]; x = x[1:]
 if len(alfa) > 0 : a = alfa[0]
 Ok = False
 d = (q, X, a)
 if d in D :
 q, g = D[d]
 if g == '' and a != '': alfa = alfa[1:]
 if g != '' : alfa = g +alfa[1:]
 Ok = True
 else : Ok = False

 if Ok:
 C = (q, x, alfa);
 Write_C (' |--', C)
 if q in F and alfa == '' : End = True
 if End and x != '' : Ok = False

 Ok = Ok and End
 return Ok

exec Exp; Write_SP (Name)

w = Input_W(); print
while len(w) > 0:
 Ok = SP (w)
 if Ok: Write_C (' |--', 'accept')
 else : Write_C (' |--', 'error')
 print
 w = Input_W(); print

>>>
Enter input string: a*(a+b)
 (0, 'a*(a+b)', '$')
 |-- (1, '*(a+b)', '$')
 |-- (0, '(a+b)', '$')
 |-- (0, 'a+b)', '($')
 |-- (1, '+b)', '($')
 |-- (0, 'b)', '($')
 |-- (1, ')', '($')
 |-- (1, '', '$')
 |-- (1, '', '')
 |-- accept

IV. TRANSLATION
If  is input alphabet and  is output alphabet, translation

from the language L1, L1*, to the language L2, L2*,

is a relation T from ** so that L1 is the domain and L2

is the codomain of T. The sentence y, such that (x, y) is in

T, is called the output of x.

5

Syntax-directed translation

One of formalisms for defining translation is the syntax-

directed translation scheme. Intuitively, syntax-directed

translation scheme is simply a grammar in which

translation elements are related to each production.

Whenever a production was used in the derivation of an

input sentence, the translation element is used to help

compute a portion of the output sentence related to the

portion of the input sentence generated by that

production. Translational form of T is defined as follows:

1) (S, S) is a translational form and the first S is related

to the second S.

2) If (A, 'A') is a translational form and if A, '

is a rule in R, then (, ''') is new translational form.

Nonterminals from  and ' are exactly related, same as

in the rule. Nonterminals from  and  are related to

such nonterminals from ' and ' in the new

translational form exactly as in the old. We write:

 (A, 'A')  (, ''')

and read (A, 'A ') "directly derives" (, ''').

Similarly to the derivation of sentential form, a series

of deriving k translational form, where k0, will be

denoted by *, so the translation defined by T,

denoted as  (T), is a set of pairs:

 (T) = { (x, y)| (S, S) * (x, y), x*, y* }

The implementation of SDT in Python is given in the

procedure SDT ():

def SDT (X) : # Syntax-directed translation
 grammars
 A = (X.replace (' ', '')).split('\n')
 Y = {'start' : A[1][0]}
 for a in A :
 if not a : continue
 b = a.split('->'); N = b[0]
 b = b[1].split(',');
 Y [N] = (tuple (b[0].split('|')),
 tuple (b[1].split('|')))
 return Y

where X is an input-output grammar of languages to

be translated, with productions of form

 A -> I, O

where I are the alternatives for input and O for output

language. For example, for translating Roman into Arabic

numerals, a grammar RA can be defined:

Input grammar, Output grammar
RA = """
R -> MA| CB| XD| I, MA| CB| XD| I
M -> m| mm| mmm, 1| 2| 3
A -> #| CB| XD| I, 000| CB| 0XD| 00I
C -> c| cc| ccc| cd| d| dc| dcc| dccc| cm, \
 1| 2| 3| 4| 5| 6| 7| 8| 9
B -> #| XD| I, 00| XD| 0I
X -> x| xx| xxx| xl| l| lx| lxx| lxxx| xc, \
 1| 2| 3| 4| 5| 6| 7| 8| 9
D -> #| I, 0| I
I -> i| ii| iii| iv| v| vi| vii| viii| ix, \
 1| 2| 3| 4| 5| 6| 7| 8| 9 """

To translate the input string, the Roman numeral, into

Arabic, it is necessary to derive syntax analysis tree

(sequence of derivations) by some parsing procedure. It is

left out here, so let's show the scheme of translating

Roman numerals into Arabic using the examples of three

generated sentential forms:

T = SDT (RA); frm = "(%s, %s)"
for i in range (3) :
 x = y = T['start']
 print frm % (x, y),
 while not x.islower() :
 for s in x :
 if s.isupper() :
 a, b = T[s]
 z = ''.join(sample (a, 1))
 i = a.index(z); z = z *(z != '#')
 x = x.replace (s, z)
 a = b[i]; y = y.replace (s, a)
 print '\t-->', frm % (x, y)
 break
 print

>>>
(R, R) --> (XD, XD) (R, R) --> (CB, CB)
 --> (xD, 1D) --> (dB, 5B)
 --> (x, 10) --> (dXD, 5XD)
(R, R) --> (MA, MA) --> (dxcD, 59D)
 --> (mmA, 2A) --> (dxc, 590)
 --> (mmI, 200I)
 --> (mmvi, 2006)

Finite transducer

Finite transducer is defined as a 6-tuple M = (Q,,,q0,F).

It is a finite automaton where  is output alphabet and  is

a mapping from Qto finite subsets of Q

configuration of finite transcudes M is a tuple (q,x,y),

where

qQ is the current state,
x is the input string remaining on the input tape, with the

 leftmost symbol of x under the input head,

y is the output string emitted up to this point.

The initial configuration is (q0,x,) and the final

configuration is(q,,y), qF, y*. A move by M is the

binary relation ├─. We write

 (q, ax, y) ├─ (r, x, yz)

if (q,a) contains (r,z) for any qQ , a, z*. We say

that y is an output for x if

 (q0,x,)├─*(q, , y)

The translation defined by M, denoted (M), is

 (M) = {(x,y)| (q0,x,)├─*(q,,y), x*, y*}

Here is an example of transducing Roman numerals into

Arabic. D is transition function with structure of elements

q : (Tm, Td, Tc, Tl, Tx, Tv, Ti, Tf)

where q is state, Ta=D[q]['mdclxvi$'.find(a)].

TRANSDUCER OF ROMAN NUMERALS INTO ARABIC

Transition function ("table")
e = '';
q m d c l x
v i $
D = { 'q0' : 0, 'tr' : 'mdclxvi$',
 'Q' : range (31), 'F' : range (1, 31),
 0: ((1,e), (8,e), (4,e), (17, e),(13, e),
 (26,e), (22, e), e),
 1: ((2,e), (8,1), (4,1), (17,10),(13,10),
 (26,100),(22,100),(e,1000)), # m
 2: ((3,e), (8,2), (4,2), (17,20),(13,20),
 (26,200),(22,200),(e,2000)), # mm

6

 3: (e, (8,3), (4,3), (17,30),(13,30),
 (26,300),(22,300),(e,3000)), # mmm
 4: ((12,e),(7,e), (5,e), (17, 1),(13, 1),
 (26, 10),(22, 10),(e, 100)), # c
 5: (e, e, (6,e), (17, 2),(13, 2),
 (26, 20),(22, 20),(e, 200)), # cc
 6: (e, e, e, (17, 3),(13, 3),
 (26, 30),(22, 30),(e, 300)), # ccc
 7: (e, e, e, (17, 4),(13, 4),
 (26, 40),(22, 40),(e, 400)), # cd
 8: (e, e, (9,e), (17, 5),(13, 5),
 (26, 50),(22, 50),(e, 500)), # d
 9: (e, e,(10,e), (17, 6),(13, 6),
 (26, 60),(22, 60),(e, 600)), # dc
 10: (e, e,(11,e), (17, 7),(13, 7),
 (26, 70),(22, 70),(e, 700)), # dcc
 11: (e, e, e, (17, 8),(13, 8),
 (26, 80),(22, 80),(e, 800)), # dccc
 12: (e, e, e, (17, 9),(13, 9),
 (26, 90),(22, 90),(e, 900)), # cm
 13: (e, e,(21,e), (16, e),(14, e),
 (26, 1),(22, 1),(e, 10)), # x
 14: (e, e, e, (),(15, e),
 (26, 2),(22, 2),(e, 20)), # xx
 15: (e, e, e, (), (),
 (26, 3),(22, 3),(e, 30)), # xxx
 16: (e, e, e, (), (),
 (26, 4),(22, 4),(e, 40)), # xl
 17: (e, e, e, (),(18, e),
 (26, 5),(22, 5),(e, 50)), # l
 18: (e, e, e, (),(19, e),
 (26, 6),(22, 6),(e, 60)), # lx
 19: (e, e, e, (),(20, e),
 (26, 7),(22, 7),(e, 70)), # lxx
 20: (e, e, e, (), (),
 (26, 8),(22, 8),(e, 80)), # lxxx
 21: (e, e, e, (), (),
 (26, 9),(22, 9),(e, 90)), # xc
 22: (e, e, e, (),(30, e),
 (25, e),(23, e),(e, 1)), # i
 23: (e, e, e, e, e,
 e,(24, e),(e, 2)), # ii
 24: (e, e, e, e, e,
 e, e,(e, 3)), # iii
 25: (e, e, e, e, e,
 e, e,(e, 4)), # iv
 26: (e, e, e, e, e,
 e,(27, e),(e, 5)), # v
 27: (e, e, e, e, e,
 e,(28, e),(e, 6)), # vi
 28: (e, e, e, e, e,
 e,(29, e),(e, 7)), # vii
 29: (e, e, e, e, e,
 e, e,(e, 8)), # viii
 30: (e, e, e, e, e,
 e, e,(e, 9)) } # ix

p = lambda x : x if str(x) else '#'
TR = D['tr']
def FT (w, a=1):
 A = a; w += '$'; q = 0; i = 1; y = ''
 C = (q, p(w), p(y)); print "(%2s,%s,%s)" % C
 while 'Ok' :
 a = w[0]; j = TR.find(a)
 if j >= 0:
 Q = D[q][j]
 if Q != () :
 q, z = Q; y += str(z); w = w[1:]
 C = (p(q), p(w), p(y))
 print " |-- (%2s,%s,%s)" % C
 if not w : return True
 else : print 'syntax error'; return False
 else:
 print 'illegal character'; return False
w = raw_input ("input Roman ").lower()
Ok = FT (w)

>>>
input Roman X
(0,x$,#)
 |-- (13 $,#)
 |-- (#,#,10)

>>>
input Roman mmvi
(0,mmvi$,#)
 |-- (1,mvi$,#)
 |-- (2,vi$,#)
 |-- (26,i$,200)
 |-- (27,$,200)
 |-- (#,#,2006)

>>>
input Roman dxc
(0,dxc$,#)
 |-- (8,xc$,#)
 |-- (13,c$,5)
 |-- (21,$,5)
 |-- (#,#,590)

V. CONCLUSION
In this paper we demonstrated how Python programming

language can be employed as a pseudo-language using the

example of selected structures and algorithms of formal

language theory for their description and implementation.

In [3], [4] and [5] there are many examples of applying

Python for implementing procedures of the context-free

languages syntax analysis and for recognizing the

languages of all types.

 Python is also suitable for use in creating the

interpreters and the preprocessors, both as an encoding

language and as a target language. Examples of such

applications are given in [5] where it is implemented as an

interpreter for language PL/0, according to [8], and

preprocessor of mini language defined in [2].

 It has been shown that Python is suitable for use in

natural language processing (NLP). In [6] and [7] Python

has been successfully applied in the implementation of the

lexical and syntax analysis of English language and its

translation in a special form.

 Finally, we can conclude with satisfaction that the

implementation of Python can significantly improve the

study of the formal language theory and its applications.

References
[1] AHO, V. A.; ULLMAN, D. J.: The Theory of Parsing, Translation,

and Compiling, vol. I: Parsing, Prentice-Hall, 1972.

[2] DIJKSTRA, E.W.: A Discipline of Programming, Prentice-Hall,
1976.

[3] DOVEDAN HAN, Z.: FORMALNI J EZICI I PREVODIOCI

  regularni izrazi, gramatike, automati, Element, Zagreb, 2012.

[4] DOVEDAN HAN, Z.: FORMALNI JEZICI I PREVODIOCI

  sintaksna analiza i primjene, Element, Zagreb, 2012.

[5] DOVEDAN HAN, Z.: FORMALNI JEZICI I PREVODIOCI

  prevođenje i primjene, Element, Zagreb, 2013.

[6] JAKUPOVIĆ, A., PAVLIĆ, M., & DOVEDAN, H. Z.:

Formalisation method for the text expressed knowledge. Expert

systems with applications. 41 (11). 5308-5322, 2014.

[7] PAVLIĆ, M., & DOVEDAN, H. Z., JAKUPOVIĆ, A.: Question

answering with a conceptual framework for knowledge-based

system development ‘‘Node of Knowledge’’. Expert systems with
applications. 42 (2015) 5264–5286, 2015.

[8] WIRTH, N.: Algorithms + Data Structures = Programs, Prentice-
Hall, 1976.

